2,868 research outputs found

    Stream Sampling for Frequency Cap Statistics

    Full text link
    Unaggregated data, in streamed or distributed form, is prevalent and come from diverse application domains which include interactions of users with web services and IP traffic. Data elements have {\em keys} (cookies, users, queries) and elements with different keys interleave. Analytics on such data typically utilizes statistics stated in terms of the frequencies of keys. The two most common statistics are {\em distinct}, which is the number of active keys in a specified segment, and {\em sum}, which is the sum of the frequencies of keys in the segment. Both are special cases of {\em cap} statistics, defined as the sum of frequencies {\em capped} by a parameter TT, which are popular in online advertising platforms. Aggregation by key, however, is costly, requiring state proportional to the number of distinct keys, and therefore we are interested in estimating these statistics or more generally, sampling the data, without aggregation. We present a sampling framework for unaggregated data that uses a single pass (for streams) or two passes (for distributed data) and state proportional to the desired sample size. Our design provides the first effective solution for general frequency cap statistics. Our ℓ\ell-capped samples provide estimates with tight statistical guarantees for cap statistics with T=Θ(ℓ)T=\Theta(\ell) and nonnegative unbiased estimates of {\em any} monotone non-decreasing frequency statistics. An added benefit of our unified design is facilitating {\em multi-objective samples}, which provide estimates with statistical guarantees for a specified set of different statistics, using a single, smaller sample.Comment: 21 pages, 4 figures, preliminary version will appear in KDD 201

    Finite energy shifts in SU(n) supersymmetric Yang-Mills theory on T^3xR at weak coupling

    Full text link
    We consider a semi-classical treatment, in the regime of weak gauge coupling, of supersymmetric Yang-Mills theory in a space-time of the form T^3xR with SU(n)/Z_n gauge group and a non-trivial gauge bundle. More specifically, we consider the theories obtained as power series expansions around a certain class of normalizable vacua of the classical theory, corresponding to isolated points in the moduli space of flat connections, and the perturbative corrections to the free energy eigenstates and eigenvalues in the weakly interacting theory. The perturbation theory construction of the interacting Hilbert space is complicated by the divergence of the norm of the interacting states. Consequently, the free and interacting Hilbert furnish unitarily inequivalent representation of the algebra of creation and annihilation operators of the quantum theory. We discuss a consistent redefinition of the Hilbert space norm to obtain the interacting Hilbert space and the properties of the interacting representation. In particular, we consider the lowest non-vanishing corrections to the free energy spectrum and discuss the crucial importance of supersymmetry for these corrections to be finite.Comment: 31 pages, 1 figure, v4 Minor changes, references correcte

    IgE-mediated histamine release from nasal mucosa is inhibited by SLPI (secretory leukocyte protease inhibitor) to the level of spontaneous release.

    Get PDF
    The secretory leukocyte protease inhibitor (SLPI) is a low-molecular-weight inhibitor of proteases, such as elastase and cathepsin G which are released from leukocytes during phagocytosis. The purpose of this study was to determine whether or not SLPI is able to inhibit IgE-mediated histamine release. Nasal mucosa from 11 test subjects without atopic disposition was used for this in vitro study. We found that SLPI inhibited histamine release in a dose-dependent way but was without influence on the spontaneous release

    On the correspondence between symmetries of two-dimensional autonomous dynamical systems and their phase plane realisations

    Full text link
    We consider the relationship between symmetries of two-dimensional autonomous dynamical system in two common formulations; as a set of differential equations for the derivative of each state with respect to time, and a single differential equation in the phase plane representing the dynamics restricted to the state space of the system. Both representations can be analysed with respect to the symmetries of their governing differential equations, and we establish the correspondence between the set of infinitesimal generators of the respective formulations. Our main result is to show that every generator of a symmetry of the autonomous system induces a well-defined vector field generating a symmetry in the phase plane and, conversely, that every symmetry generator in the phase plane can be lifted to a generator of a symmetry of the original autonomous system, which is unique up to constant translations in time. The process of lifting requires the solution of a linear partial differential equation, which we refer to as the lifting condition. We discuss in detail the solution of this equation in general, and exemplify the lift of symmetries in two commonly occurring examples; a mass conserved linear model and a non-linear oscillator model.Comment: 22 pages, 7 figure

    Energy translation symmetries and dynamics of separable autonomous two-dimensional ODEs

    Full text link
    We study symmetries in the phase plane for separable, autonomous two-state systems of ordinary differential equations (ODEs). We prove two main theoretical results concerning the existence and non-triviality of two orthogonal symmetries for such systems. In particular, we show that these symmetries correspond to translations in the internal energy of the system, and describe their action on solution trajectories in the phase plane. In addition, we apply recent results establishing how phase plane symmetries can be extended to incorporate temporal dynamics to these energy translation symmetries. Subsequently, we apply our theoretical results to the analysis of three models from the field of mathematical biology: a canonical biological oscillator model, the Lotka--Volterra (LV) model describing predator-prey dynamics, and the SIR model describing the spread of a disease in a population. We describe the energy translation symmetries in detail, including their action on biological observables of the models, derive analytic expressions for the extensions to the time domain, and discuss their action on solution trajectories.Comment: 18 pages, 3 figure

    Triplet Leptogenesis in Left-Right Symmetric Seesaw Models

    Full text link
    We discuss scalar triplet leptogenesis in a specific left-right symmetric seesaw model. We show that the Majorana phases that are present in the model can be effectively used to saturate the existing upper limit on the CP-asymmetry of the triplets. We solve the relevant Boltzmann equations and analyze the viability of triplet leptogenesis. It is known for this kind of scenario that the efficiency of leptogenesis is maximal if there exists a hierarchy between the branching ratios of the triplet decays into leptons and Higgs particles. We show that triplet leptogenesis typically favors branching ratios with not too strong hierarchies, since maximal efficiency can only be obtained at the expense of suppressed CP-asymmetries.Comment: 16 pages, 5 figures, published versio

    What Do Rich Countries Trade with Each Other? R&D and the Composition of U.S. and Swedish Trade

    Get PDF
    A long tradition in international economics explains comparative advantage by differences between countries in their stage of development, or their endowments of land, labor, and capital, and suggests that universal development will reduce the importance of trade. Sweden and the United States possess similar factor endowments and have converged in overall productivity, but their bilateral trade has grown. The example of these two countries suggests that mutual technological progress may promote trade, with the new basis for specialization being the different technology levels or R&D intensities of the goods being traded, rather than the initial endowments.

    Sperm microRNA content is altered in a mouse model of male obesity, but the same suite of microRNAs are not altered in offspring's sperm

    Get PDF
    The prevalence of obesity is increasing worldwide and has tripled in men of reproductive age since the 1970s. Concerningly, obesity is not only comorbid with other chronic diseases, but there is mounting evidence that it increases the non-communicable disease load in their children (eg mortality, obesity, autism). Animal studies have demonstrated that paternal obesity increases the risk of metabolic (eg glucose metabolism defects, obesity) and reproductive disorders in offspring. Epigenetic changes within sperm are clear mechanistic candidates that are associated with both changes to the father’s environment and offspring phenotype. Specifically there is emerging evidence that a father’s sperm microRNA content both responds to paternal environmental cues and alters the gene expression profile and subsequent development of the early embryo. We used a mouse model of high fat diet (HFD) induced obesity to investigate whether male obesity could modulate sperm microRNA content. We also investigated whether this alteration to a father’s sperm microRNA content lead to a similar change in the sperm of male offspring. Our investigations were initially guided by a Taqman PCR array, which indicated the differential abundance of 28 sperm borne microRNAs in HFD mice. qPCR confirmation in a much larger cohort of founder males demonstrated that 13 of these microRNAs were differentially abundant (11 up-regulated; 2 down-regulated) due to HFD feeding. Despite metabolic and reproductive phenotypes also being observed in grand-offspring fathered via the male offspring lineage, there was no evidence that any of the 13 microRNAs were also dysregulated in male offspring sperm. This was presumably due to the variation seen within both groups of offspring and suggests other mechanisms might act between offspring and grand-offspring. Thus 13 sperm borne microRNAs are modulated by a father’s HFD and the presumed transfer of this altered microRNA payload to the embryo at fertilisation potentially acts to alter the embryonic molecular makeup post-fertilisation, altering its growth trajectory, ultimately affecting adult offspring phenotype and may contribute to paternal programming.Tod Fullston, E. Maria C. Ohlsson-Teague, Cristin G. Print, Lauren Y. Sandeman, Michelle Lan

    Advancing maternal age is associated with lower bone mineral density in young adult male offspring

    Get PDF
    Summary Advancing maternal age has been related to increased risk of fetal death and morbidity, as well as higher fracture risk during childhood, in the offspring. In the present study, we demonstrate that advancing maternal age is independently associated with reduced bone mass in the young adult male offspring. Introduction In Sweden the maternal age in both primi- and multipara mothers has steadily increased during the last three decades. It has been previously reported that advancing maternal age increases the risk of fetal death, but also of morbidity in the offspring, such as chromosome abnormalities, leukemia, diabetes mellitus type 1, and schizophrenia. Whether or not maternal age influences peak bone mass has not been reported. The aim of the present study was to investigate whether a high maternal age was associated with lower peak bone mass, as measured using DXA in a large cohort of male offspring [the Gothenburg Osteoporosis and Obesity Determinants study (GOOD)]. Methods Through the Swedish multi-generation register, we identified the mothers of 1,009 GOOD study subjects. From the Swedish medical birth register detailed information about the medical circumstances at the time of child birth were obtained, including maternal and offspring anthropometrics (birth height and weight), maternal age, and smoking habits, parity and length of pregnancy. Results Maternal age was inversely correlated to areal BMD (aBMD) at the total body (r =−0.07, p = 0.03) and the lumbar spine (r =−0.09, p < 0.01). Using a linear regression model (with covariates including current physical activity, smoking, calcium intake, weight, present height and birth height, total body lean and fat mass in the offspring, and length of pregnancy), we found that maternal age negatively independently predicted lumbar spine aBMD (β =−0.08, p < 0.01) in the male offspring. Conclusions In conclusion, our results suggest that advancing maternal age could negatively affect bone mass in young adult men
    • …
    corecore